Syllabus for the post of Research Assistant ‘Grade-A’ (Chemistry)

<table>
<thead>
<tr>
<th>Section</th>
<th>Questions</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Knowledge / awareness</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mental Ability / I.Q. determination</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mathematical ability/reasoning</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Language Proficiency (Punjabi & English)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>As per prescribed qualifications for job related</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

GENERAL KNOWLEDGE / AWARENESS (10 Q)

MATHEMATICAL ABILITY (10 Q)

Number system, Simplification, HCF & LCM, Percentage, Average, Ratio & Proportion, Profit & Loss, Partnership, Time and Work, Time and Distance, Permutations & Combinations, Probability.

MENTAL ABILITY / REASONING (10 Q)

Reasoning Ability: Analogy / Analogous Problems, Classification, Word formation, Ranking / Arrangement, Series, Coding & Decoding, Distance and Direction, Symbol & Notation, Scheduled Day or Date, problem based on Ages and Calendar, Data Interpretation.

LANGUAGE PROFICIENCY (ENGLISH 10 Q, PUNJABI 10 Q)

General English up to 10 +2 standard
General Punjabi up to 10th standard

PROFESSIONAL (50 Q)

Inorganic Chemistry: Chemical periodicity, Structure and bonding in homo- and heteronuclear molecules, including shapes of molecules (VSEPR Theory), Concepts of acids and bases, Hard-Soft acid base concept, Non-aqueous solvents, Main group elements and their compounds: Allotropy, synthesis, structure and bonding, industrial importance of the compounds, Transition elements and coordination compounds: structure, bonding theories, spectral and magnetic properties, reaction mechanisms, Inner transition elements: spectral and magnetic properties, redox chemistry, analytical applications, Organometallic compounds: synthesis, bonding and structure, and reactivity. Organometallics in homogeneous catalysis, Cages and metal clusters, Analytical chemistry separation, spectroscopic, electro- and thermoanalytical methods, Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron- transfer reactions; nitrogen fixation, metal complexes in medicine, Characterisation of inorganic
compounds by IR, Raman, NMR, EPR, Mössbauer, UV-vis, NQR, MS, electron spectroscopy and microscopic techniques. Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.

Physical Chemistry: Basic principles of quantum mechanics: Postulates; operator algebra; exactly solvable systems; particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbitals; orbital and spin angular momenta; tunnelling. Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy; applications. Atomic structure and spectroscopy; term symbols; many-electron systems and antisymmetry principle. Chemical bonding in diatomics; elementary concepts of MO and VB theories; Hückel theory for conjugated π-electron systems. Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules. Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities – selection rules; basic principles of magnetic resonance. Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes; Maxwell’s relations; spontaneity and equilibria; temperature and pressure dependence of thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibria and phase rule; thermodynamics of ideal and non-ideal gases, and solutions. Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to thermodynamic quantities – calculations for model systems. Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye-Hückel theory; electrolytic conductance – Kohlrausch’s law and its applications; ionic equilibria; conductometric and potentiometric titrations. Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical reactions. Colloids and surfaces: Stability and properties of colloids; isotherms and surface area; heterogeneous catalysis. Solid state: Crystal structures; Bragg’s law and applications; band structure of solids. Polymer chemistry: Molar masses; kinetics of polymerization. Data analysis: Mean and standard deviation; absolute and relative errors; linear regression; covariance and correlation coefficient.